Mathematics Creative Problem Solving Competition Semi-final (Secondary)
 Marking Scheme

1a) When higher order terms are added, the polynomial gets closer to the formula at a given range.	[2]
1b) Yes!	$[1]$
1c) $a_{0}=$ formula at $x=0$.	$[2]$

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
2a) 1. \(\mathrm{a}_{0}=\mathrm{f}(0)\) \\
2. Adjust \(a_{i}\) until minimum "error" reached. (\(\mathrm{i}=1\) to n) \\
3. Repeat 2 until \(\mathrm{i}=\mathrm{n}\)
\end{tabular} \& [5] \\
\hline \begin{tabular}{l}
2b) \(>\mathrm{a} 0\) is the y intercept. \\
\(>\mathrm{a}_{1}\) is the slope of tangent at \(\mathrm{x}=0\). \\
\(>\mathrm{a}_{2}\) is the curvature of the curve at \(\mathrm{x}=0\). \\
Positive values mean concave upward. Negative value mean concave downward.
\end{tabular} \& \([1]\)
\([1]\)

$[2]$

\hline | 2c) $>$ Visual observation |
| :--- |
| $>$ Minimum area |
| > Minimum difference at predefined points |
| $>$ Minimum difference square at predefined points OR any other reasonable suggestions. | \& [2]

\hline 2d) Increase number of higher order terms. (i.e. increase the degree of the polynomial) \& [2]

\hline 2e) i. The area around $x=0$ has smaller error. Error increases as it approaches $x=1.5$. \& [2]

\hline | 2e) ii. 1 . Shift the function to left by 0.5 . $(X=x-0.5)$ |
| :--- |
| 2. $\mathrm{a}_{0}=\mathrm{f}(\mathrm{X}=0)$ |
| 3. Adjust a_{i} until minimum "error" reached around $X=0$. ($\mathrm{i}=1$ to n) |
| 4. Repeat 3 until $\mathrm{i}=\mathrm{n}$ |
| 5. After finding all coefficients a_{i}, the new coefficient of polynomial can be obtained by shifting the function right by $0.5(x=X+0.5)$ and expanding the polynomial. i.e. $y=a_{0}+a_{1}(x+0.5)+a_{2}(x+0.5)^{2}+a_{3}(x+0.5)^{3}+a_{4}(x+0.5)^{4}+$ $a_{5}(x+0.5)^{5}$ | \& [2]

$[2]$

\hline
\end{tabular}

3) 4. $a_{o}=f(0)=-1$
2. From observations, a_{1} is equal to the slope of the tangent.

The tangent is approximated by $=(\mathrm{f}(\delta \mathrm{x})-\mathrm{f}(-\delta \mathrm{x})) / 2 \delta \mathrm{x}$, where $\delta \mathrm{x}$ is a small number.
i.e. $\mathrm{a}_{1} \approx(\mathrm{f}(\delta \mathrm{x})-\mathrm{f}(-\delta \mathrm{x})) / 2 \delta \mathrm{x}$
3. $f(x) \approx a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, f(x)-\left(a_{0}+a_{1} x\right) \approx a_{2} x^{2}+\cdots+a_{n} x^{n}$

In order to find a_{2}, set x to be a small number and neglect those order 3 or higher terms.

Logical approach
Systematic presentation
Illustration of using this method to solve (3):

$$
a_{o}=f(0)=-1
$$

For demonstration, set $\delta \mathrm{x}=0.01$.

$$
\begin{gathered}
\mathrm{a}_{1} \approx \frac{\mathrm{f}(+\delta \mathrm{x})-\mathrm{f}(-\delta \mathrm{x})}{2 \delta \mathrm{x}}=1.99980002 \\
\mathrm{f}(\mathrm{x})-\left(\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}\right) \approx \mathrm{a}_{2} \mathrm{x}^{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\
\mathrm{f}(\mathrm{x})-(-1+1.99980002 \mathrm{x}) \approx \mathrm{a}_{2} \mathrm{x}^{2}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{x}^{n}
\end{gathered}
$$

set $x=0.01$ and neglect those order 3 and higher terms.
$-0.97990201-(-0.98) \approx \mathrm{a}_{2} 0.01^{2}$

$$
\mathrm{a}_{2} \approx 0.99990001
$$

Similarly, if
$\delta \mathrm{x}=0.001, \mathrm{a}_{1} \approx 1.999998, \mathrm{a}_{2} \approx 0.999999$
$\delta \mathrm{x}=0.0001, \mathrm{a}_{1} \approx 1.99999998, \mathrm{a}_{2} \approx 0.999999983$
** It can be shown by Taylor expansion that:

$$
\frac{2 x-1}{x^{2}+1}=-1+2 x+x^{2}-2 x^{3}-x^{4}+2 x^{5}+x^{6}+\cdots
$$

NOTE! BEWARE OF TRUCATION ERROR! $\delta \mathrm{x}=0.000000001, \mathrm{a}_{1} \approx$ $1.999999999, \mathrm{a}_{2} \approx 111.0223025$

Successful demonstration and explanation.
(4) Pros:

Simple \& yet give better mathematical intuition
Accuracy can be improved by adding higher order terms.
Cons:
The approximation is good for only small displacement from the expansion point.
Otherwise, new expansions are needed.
No good for periodic functions.

Digression:

Taylor expansion

$$
\begin{aligned}
& \begin{aligned}
\mathrm{f}(\mathrm{x}) \approx \mathrm{f}\left(\mathrm{x}_{0}\right)+\frac{\mathrm{f}^{(1)}\left(\mathrm{x}_{0}\right)}{1!}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\frac{\mathrm{f}^{(2)}\left(\mathrm{x}_{0}\right)}{2!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}+\cdots+\frac{\mathrm{f}^{(\mathrm{n})}\left(\mathrm{x}_{0}\right)}{\mathrm{n}!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\mathrm{n}} \\
\begin{aligned}
& \mathrm{y}_{1}=\frac{1}{2-\mathrm{x}} \approx \frac{1}{2}+\frac{1}{4} \mathrm{x}+\frac{1}{8} \mathrm{x}^{2}+\frac{1}{16} \mathrm{x}^{3}+\frac{1}{32} \mathrm{x}^{4}+\frac{1}{64} \mathrm{x}^{5} \\
&=0.5+0.25 \mathrm{x}+0.125 \mathrm{x}^{2}+0.0625 \mathrm{x}^{3}+0.03125 \mathrm{x}^{4}+0.015625 \mathrm{x}^{5} \\
& \mathrm{y}_{2}=\frac{10 \mathrm{x}^{3}+5 \mathrm{x}^{2}+1}{\mathrm{x}^{2}+5 \mathrm{x}+10} \approx \frac{1}{10}-\frac{1}{20} \mathrm{x}+\frac{103}{200} \mathrm{x}^{2}+\frac{299}{400} \mathrm{x}^{3}-\frac{1701}{4000} \mathrm{x}^{4}+\frac{1103}{8000} \mathrm{x}^{5} \\
& \quad 0.1-0.05 \mathrm{x}+0.515 \mathrm{x}^{2}+0.7475 \mathrm{x}^{3}-0.42525 \mathrm{x}^{4}+0.13785 \mathrm{x}^{5}
\end{aligned} \\
\begin{array}{r}
\mathrm{y}_{3}=\frac{1-\mathrm{x}+\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{6}}{\mathrm{x}^{2}-4} \approx-\frac{1}{4}+\frac{1}{4} \mathrm{x}-\frac{3}{16} \mathrm{x}^{2}+\frac{5}{48} \mathrm{x}^{3}-\frac{3}{64} \mathrm{x}^{4}+\frac{5}{192} \mathrm{x}^{5} \\
\quad
\end{array} \\
\quad=-0.25+0.25 \mathrm{x}-0.1875 \mathrm{x}^{2}+0.104166 \mathrm{x}^{3}-0.046875 \mathrm{x}^{4}
\end{aligned}
\end{aligned}
$$

Extra Questions:

Why should we start with x 0 instead of x 5 ? What is the reasonable range of $\mathrm{x}-\mathrm{x}_{0}$?
Are there any restrictions on setting δx ? How to find them out?
Give one example that this kind of expansion doesn't work.

