Mathematics Creative Problem Solving Competition

Semi-final (Secondary)

Marking Scheme

1a) When higher order terms are added, the polynomial gets closer to the formula at a	
given range.	
1b) Yes!	[1]
1c) $a_0 =$ formula at x=0.	[2]

2a) 1.	$a_0 = f(0)$	
2.	Adjust a_i until minimum "error" reached. (i=1 to n)	
3.	Repeat 2 until $i = n$	[5]
2b) >>	ao is the y intercept.	[1]
⋟	a_1 is the slope of tangent at x=0.	[1]
⋟	a ₂ is the curvature of the curve at $x=0$.	
	Positive values mean concave upward. Negative value mean concave downward.	[2]
2c) ≻	Visual observation	[2]
\succ	Minimum area	
⋟	Minimum difference at predefined points	
\succ	Minimum difference square at predefined points	
OI	R any other reasonable suggestions.	
2d) In	crease number of higher order terms. (i.e. increase the degree of the polynomial)	[2]
2e) i.	The area around $x = 0$ has smaller error. Error increases as it approaches $x = 1.5$.	[2]
2e) ii.	1. Shift the function to left by 0.5. (X=x-0.5)	[2]
	2. a ₀ =f(X=0)	
	3. Adjust a _i until minimum "error" reached <i>around</i> $X=0$. (i=1 to n)	
	4. Repeat 3 until $i = n$	
	5. After finding all coefficients a _i , the new coefficient of polynomial can be	
	obtained by shifting the function right by 0.5 (x=X+0.5) and expanding the	
	polynomial. i.e. $y = a_0 + a_1(x+0.5) + a_2(x+0.5)^2 + a_3(x+0.5)^3 + a_4(x+0.5)^4 + a_4(x+0.5$	[2]
	$a_5(x+0.5)^{-5}$	
	[Logical and systematic presentation]	[1]

3) 1. $a_0 = f(0) = -1$

2. From observations, a_1 is equal to the slope of the tangent. The tangent is approximated by = $(f(\delta x) - f(-\delta x))/2\delta x$, where δx is a small number.

i.e. $a_1 \approx (f(\delta x) - f(-\delta x))/2\delta x$

3. $f(x) \approx a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, $f(x) - (a_0 + a_1x) \approx a_2x^2 + \dots + a_nx^n$ In order to find a_2 , set x to be a small number and neglect those order 3 or higher terms.

Logical approach [3]

Systematic presentation [1]

Illustration of using this method to solve (3):

$$a_0 = f(0) = -1$$

For demonstration, set $\delta x = 0.01$.

$$a_1 \approx \frac{f(+\delta x) - f(-\delta x)}{2\delta x} = 1.99980002$$

 $f(x) - (a_0 + a_1 x) \approx a_2 x^2 + \dots + a_n x^n$ $f(x) - (-1 + 1.99980002x) \approx a_2 x^2 + \dots + a_n x^n$

set x=0.01 and neglect those order 3 and higher terms.

 $-0.97990201 - (-0.98) \approx a_2 0.01^2$

$$a_2 \approx 0.99990001$$

Similarly, if $\delta x = 0.001$, $a_1 \approx 1.999998$, $a_2 \approx 0.9999999$

 $\delta x = 0.0001, a_1 \approx 1.99999998, a_2 \approx 0.999999983$

** It can be shown by Taylor expansion that:

$$\frac{2x-1}{x^2+1} = -1 + 2x + x^2 - 2x^3 - x^4 + 2x^5 + x^6 + \cdots$$

NOTE! BEWARE OF TRUCATION ERROR! $\delta x = 0.000000001$, $a_1 \approx 1.999999999$, $a_2 \approx 111.0223025$

Successful demonstration and explanation. [2]

(4) Pros:

Simple & yet give better mathematical intuition

Accuracy can be improved by adding higher order terms.

Cons:

The approximation is good for only small displacement from the expansion point. Otherwise, new expansions are needed.

No good for periodic functions.

[2]

Digression:

Taylor expansion

$$\begin{split} f(x) &\approx f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n \\ y_1 &= \frac{1}{2 - x} \approx \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{1}{16}x^3 + \frac{1}{32}x^4 + \frac{1}{64}x^5 \\ &= 0.5 + 0.25x + 0.125x^2 + 0.0625x^3 + 0.03125x^4 + 0.015625x^5 \\ y_2 &= \frac{10x^3 + 5x^2 + 1}{x^2 + 5x + 10} \approx \frac{1}{10} - \frac{1}{20}x + \frac{103}{200}x^2 + \frac{299}{400}x^3 - \frac{1701}{4000}x^4 + \frac{1103}{8000}x^5 \\ &= 0.1 - 0.05x + 0.515x^2 + 0.7475x^3 - 0.42525x^4 + 0.13785x^5 \\ y_3 &= \frac{1 - x + \frac{x^2}{2} - \frac{x^3}{6}}{x^2 - 4} \approx -\frac{1}{4} + \frac{1}{4}x - \frac{3}{16}x^2 + \frac{5}{48}x^3 - \frac{3}{64}x^4 + \frac{5}{192}x^5 \\ &= -0.25 + 0.25x - 0.1875x^2 + 0.104166x^3 - 0.046875x^4 \\ &+ 0.0260416x^5 \end{split}$$

Extra Questions:

Why should we start with x_0 instead of x_5 ? What is the reasonable range of $x-x_0$? Are there any restrictions on setting δx ? How to find them out? Give one example that this kind of expansion doesn't work.

.